Problem Set 4 Thursday June 19, 2003

Problem 1:

- 1a) The figure shows a simple transport line consisting of a corrector followed by two bpms. The corrector is separated from the bpms by drift spaces L_1 and L_2 . Determine the response matrix for this corrector/bpm configuration.
- 1b) Determine the pseudoinverse of the response matrix R in 9a.
- 1c) Derive a formula for the corrector kick angle change that minimizes the displacements at the two bpms.
- 1d) Determine the SVD of the response matrix $R = USV^T$. The eigenvalues of RR^T (R^TR) are the squares of the singular values and the normalized eigenvectors of RR^T and R^TR are the columns of U and V respectively.
- 1e) Determine the value of the corrector angle that minimizes the position of the beam at the bpms by minimizing the function:

$$\chi^2 = (x_1 - L_1\theta)^2 + (x_2 - L_2\theta)^2$$
.

Problem 2:

Figure for problem 2

- 2a) The figure shows a simple transport line consisting of two correctors followed by one bpm. The corrector is separated from the bpms by drift spaces L_1 and L_2 . Determine the response matrix for this corrector/bpm configuration.
- 2b) Determine the pseudoinverse of the response matrix R in 2a.
- 2c) Determine the SVD of the response matrix $R = USV^T$. The eigenvalues of RR^T (R^TR) are the squares of the singular values and the normalized eigenvectors of RR^T and R^TR are the columns of U and V respectively.
- 2d) Determine the pseudoinverse of the matrix R using the SVD result in 2c.
- 2e) Use the result of 2d to determine the corrector kick angles that minimize the position at the bpm.
- 2f) The method of Lagrange multipliers is used to minimize a function subject to a constraint. In this problem, the constraint is that the difference between the bpm position must always equal the sum of the two corrector kicks. The constraint can be expressed by the function:

$$G(\theta_1, \theta_2) = x - L_1\theta_1 - L_2\theta_2 = 0$$

In this problem, the function (χ^2) to minimize with this constraint is the sum of the squares of the corrector kick angles: $\chi^2 = \theta_1^2 + \theta_2^2$.

Given the function:

$$F(\theta_1,\!\theta_2,\!\lambda) = \, \chi^2 + \lambda G(\theta_1,\!\theta_2) \; , \label{eq:final_final_final}$$

Derive formulas for the corrector kick angles by minimizing $F(\theta_1, \theta_2, \lambda)$ with respect to the angles and λ .

Figure for problem 2g

2g) To illustrate the least squares minimization obtained from the SVD/pseudoinverse method and the method of Lagrange multipliers, consider the constraint function $G(\theta_1,\theta_2)$ and χ^2 in the θ_1 , θ_2 plane: Show that the values for θ_1 and θ_2 given by both methods are simply the point where the circle defined by ρ is tangent to the line defined by $G(\theta_1,\theta_2)=0$.